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The rapid rise of antibiotic resistance, combined with the increas-
ing cost and difficulties to develop new antibiotics, calls for
treatment strategies that enable more sustainable antibiotic use.
The development of such strategies, however, is impeded by
the lack of suitable experimental approaches that allow test-
ing their effects under realistic epidemiological conditions. Here,
we present an approach to compare the effect of alternative
multidrug treatment strategies in vitro using a robotic liquid-
handling platform. We use this framework to study resistance
evolution and spread implementing epidemiological population
dynamics for treatment, transmission, and patient admission and
discharge, as may be observed in hospitals. We perform massively
parallel experimental evolution over up to 40 d and comple-
ment this with a computational model to infer the underlying
population-dynamical parameters. We find that in our study, com-
bination therapy outperforms monotherapies, as well as cycling
and mixing, in minimizing resistance evolution and maximizing
uninfecteds, as long as there is no influx of double resistance into
the focal treated community.

combination therapy | antibiotic resistance | experimental epidemiology

Modern medicine critically relies on the availability of potent
antibiotics. The rapid rise of resistance, together with

the slowing rate of discovery of new antibiotics, threatens to
undermine future options of antibiotic therapy (1). To preserve
the efficacy of currently available antibiotics, we need to find
approaches for a more sustainable use. Clearly, reducing unnec-
essary and inappropriate use of antimicrobials is a public health
priority (2). In many situations, however, treatment is required,
which raises the question of how to best treat with antibiotics
while simultaneously minimizing the risk of antibiotic resistance.
For the treatment of pathogens with high potential to develop
resistance, such as HIV, Mycobacterium tuberculosis, or Plasmod-
ium falciparum, combination therapy has been highly successful
in reducing treatment failure due to resistance and has become
the standard of practice (3). For hospital-acquired bacterial
infections, combination therapy is less common. Other multidrug
treatment strategies, such as cycling or mixing, have been inves-
tigated quite extensively by using computational models (4–14)
and, to a lesser extent, by randomized clinical trials (RCTs) (15–
17). Computational models allow one to explore a broad range
of treatment strategies and often show that combination ther-
apy can be beneficial, but are naturally limited in their realism.
Clinical studies, however, often do not show superiority of com-
bination therapy, but allow one to study only a limited set of sce-
narios. What impedes progress in the field is the lack of a prac-
ticable framework for experimental epidemiology, which allows
testing of the effect of treatment scenarios under realistic epi-
demiological population dynamics. Animal models, however, are
impractical due to the difficulty of controlling experimental con-
ditions, the prohibitive costs, and the limited ability to compare
epidemiological spread to humans. As a possible alternative, we
present here an approach to compare the effect of alternative
treatment strategies using a robotic liquid-handling platform.
With this platform, we study resistance evolution in vitro under
treatment implementing realistic epidemiological population

dynamics for infection and patient migration. We complement
this by simulating the same processes using an epidemiological
model (Fig. 1A).

Our approach mimics a hospital with continuous admission
and discharge of patients (Fig. 1B). The central unit represent-
ing an individual patient is a well in a microtiter plate, which
can either contain only bacterial growth medium (uninfected
patient/well), or contain sensitive or resistant strains (infected
patient/well). As a model organism, we used Escherichia coli
MG1655. To increase the likelihood to observe de novo resis-
tance, we used a mutS knockout which exhibits an around
100-fold higher mutation rate than the wild type.

Treatment was simulated by adding antibiotics to the wells
(treated patient/well). We used two antibiotics, streptomycin (A)
and nalidixic acid (B). These antibiotics were chosen because
they have different modes of action (protein synthesis inhibi-
tion and gyrase inhibition, respectively) and because for each
antibiotic, there are well-described single point mutations that
show no epistasis (18), and strains of E. coli adapted to these
drugs did not show collateral resistance (19). Furthermore,
at subinhibitory concentrations, these two antibiotics do not
show synergistic or antagonistic interactions and show similar,
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Fig. 1. (A) Schematic diagram of the dynamical epidemiological model used (Materials and Methods and SI Appendix). Colors correspond to processes
in B and phenotypes in C–H. (B) Schematic representation of one treatment arm in the experimental framework. Rounded rectangles represent a hos-
pital (microtiter plate) containing uninfected (wells containing only bacterial growth medium) and infected (growth medium with sensitive or resistant
strains) patients. Plates for day n + 1 are prepared with medium and antibiotics of the corresponding treatment arm and are then inoculated from the
community (rectangle) and/or from the previous day’s plate according to the chosen scenario (see Results). Infection and superinfection are modeled
by additional transfers from the previous day’s (n) plate. After incubation, cultures are used for the next day’s inoculation, and all cultures are spot-
ted on agar plates for the determination of population phenotypes. Colors correspond for processes in A; purple is used for procedures with no direct
equivalent in the epidemiological model. (C–H) Population phenotype frequency during experimental evolution in the absence of preexisting resistance
(scenario ∅). Ribbons indicate the observed range in four replicate populations. Lines denote the frequency of population phenotypes after each transfer
based on a model fit to all data simultaneously using the mean of the posterior distribution for each parameter. A, resistant to nalidixic acid; B, resis-
tant to streptomycin, A/B, mixed population of single resistants; AB, resistant to both drugs; S, sensitive; U, uninfected patients. (C) No treatment. The
gap at transfer 13 is due to missing data resulting from a mechanical malfunction of the setup. (D) Monotherapy A (nalidixic acid). (E) Monotherapy
B (streptomycin). (F) Combination therapy. (G) Cycling: Treatment is switched every two transfers between nalidixic acid and streptomycin. (H) Mixing:
Treatment with nalidixic acid or streptomycin is randomly assigned to each well for each transfer. In all treatment strategies, each antibiotic is used
at 2×MIC.

bactericidal, time-kill kinetics (20). While nalidixic acid is no
longer in clinical use, newer quinolones (such as ciprofloxacin)
with the same mode of action are still widely used. Streptomycin
is widely used and is considered a critically important antibiotic,
according to the World Health Organization (21).

We considered three different combination strategies: combi-
nation therapy, where patients are treated with both antibiotics
simultaneously; cycling, meaning temporal rotation of treatment
with either antibiotic; and mixing, meaning the random treat-
ment of half the population with antibiotic A and the other half
with antibiotic B at the same time. In addition, we considered the
two monotherapy strategies with either antibiotic alone, and we
also included no treatment as a control.

Each treatment strategy was implemented in four replicates
on a 384-well plate, thus simulating four replicate hospitals,
each with 94 patients (plus eight control wells to monitor unin-
tended cross-contamination). Bacterial populations were grown
for 24 h at 37 ◦C, representing 1 d in the hospital. Then, a frac-
tion of wells on the incubated plate were chosen randomly to
represent turnover due to discharge and admission of patients.
The average stay of a patient was thus independent of the
disease status. From all other wells, a small volume was trans-
ferred to new microtiter plates containing growth medium and
antibiotics corresponding to the treatment regimen. For all treat-
ment regimens, including combination therapy, each antibiotic
was used at twice the minimal inhibitory concentration (MIC).
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We chose a concentration above the MIC, but low enough to
allow for the emergence of de novo resistance in our rela-
tively small populations (approximately 107 colony-forming units
[CFU]/mL). At these concentrations, we observed similar resis-
tant mutant frequencies for the sensitive strain used in these
experiments (SI Appendix, Fig. S2A). Mutation probabilities to
high-level resistance were different for nalidixic acid and strep-
tomycin, but were the same irrespective of existing resistance to
the other drug (SI Appendix, Fig. S2B).

The wells chosen to represent patient discharge and admission
were not transferred, but instead received a small inoculum from
stock populations representative of the prevalence of uninfected,
sensitive-, and resistant-infected individuals in the community
outside the hospital. Infection and superinfection were simu-
lated by transferring small volumes from one well to another.
This infection step was identical across all treatment arms, but
the probability of transmission depended on the effect of the
treatment on bacterial densities. The above procedure was iter-
ated for many days to simulate patient dynamics, as may be
observed in hospitals, and the effects of alternative treatment
regimens on the evolution and spread of antibiotic resistance
were compared. For better readability, we will refer to the
wells as patients when referring to the epidemiological level
of the population dynamics. For further details, see Materials
and Methods.

Results
Combination Therapy Outperforms Other Strategies. We compare
alternative treatment regimens based on their effect on 1) maxi-
mizing the frequency of uninfected individuals and 2) minimizing
the frequency of individuals infected by a resistant strain. The
first criterion can be applied to all six treatment arms. The second
one, however, does not allow comparison with control using no
antibiotics, as the control trivially prevents the evolution of resis-
tance. The resistance phenotype of the bacterial population in a
well was measured by transferring small aliquots from the well
onto four different agar plates containing either no antibiotic,
only antibiotic A or B, or both. An A-resistant phenotype would
thus grow on the no-drug and the A-containing plate, but not
on the B- and AB-containing plates. Additionally, we assessed
resistance phenotype by growth (i.e., optical density at 595 nm
[OD595] > 0.1) in the experimental cultures.

For the first scenario (scenario ∅), we assumed that there
was no influx of antibiotic-resistant infections from outside
(i.e., the wells representing newly admitted patients contained
either no bacteria or sensitive bacteria only). Hence, all resis-
tance observed evolved in response to treatment in the hospital.
Patients were discharged and admitted with a rate of 0.2 per day.
The rate of infection was 0.3. The time course of 40 successive
days of treatment for all six treatment arms is shown in Fig. 1
C–H. With regard to the treatment effect on the frequency of
uninfecteds, we found that combination therapy was most effec-
tive, as the entire infected population was cleared throughout the
course of the experiment. Cycling and mixing lead to a lower level
of uninfecteds, but still substantially higher than both monother-
apies. Because of the strong bottleneck at every transfer (a dilu-
tion of 1/166), low-frequency, nongrowing phenotypes, such as
persisters, are not expected to be maintained in the experiment.
With regard to the treatment effect on resistance, again, combi-
nation therapy outperformed the other strategies. The resistance
frequency under cycling and mixing was similar, and lower than
under the monotherapies. Surprisingly, resistance to both antibi-
otics did not emerge and spread, despite the fact that there was
at least one combination of two single-point mutations (i.e., gyrA
S83 L and rpsL K43 R), each giving high-level resistance to one
antibiotic, that conferred high-level resistance to both antibiotics
at low fitness cost (18). Sequencing the resistance-determinant
regions of gyrA and rpsL revealed mostly different mutations

at those positions (SI Appendix, Table S2). Trindade et al. (18)
report both positive and negative epistatic interactions between
mutations at these positions. This raises the possibility that these
interactions prevent the evolution of double resistance in our
experiment.

The findings, that combination therapy outperforms the other
strategies, and that cycling and mixing have similar effects, are in
good agreement with the computer simulations of Tepekule et
al. (12). Moreover, the observation that cycling and mixing have
similar effects is also in agreement with the outcomes of a recent
multicenter RCT (17).

Parameter Estimates Vary across Different Treatment Arms. Fig. 1
C–H also shows the population dynamics of a model that is fit-
ted simultaneously to the time course of all treatment arms. The
model is an extension of the model used by Tepekule et al. (12)
(Materials and Methods and SI Appendix). Fitting the model inde-
pendently to each treatment improved the fit by permitting the
same parameter to have different posterior distributions for dif-
ferent treatment arms. Ideally, we would expect similar posterior
distributions for a given parameter across those treatment arms
for which the parameter can be estimated, since building an epi-
demiological model fundamentally assumes that the dynamics of
different treatment arms can be explained by using the same set
of processes. The identifiability of the parameters for the differ-
ent treatment arms is shown in a Venn diagram (SI Appendix,
Fig. S4). However, fitting the model separately to each treat-
ment revealed substantial differences for some key parameters
between the alternative treatment regimens (Fig. 2). Although
the same processes (e.g., de novo evolution of resistance in
response to drugs) occurred in the monotherapies and cycling
or mixing, parameter estimates obtained from the different
treatment arms differed substantially. This implies that the estab-
lished approach of using a general model succeeds in explaining
the dynamics of different treatment outcomes up to a certain
level (Fig. 1 A–F), but does represent an oversimplification by
excluding treatment-specific processes.

Cycling and Mixing Perform Better than Predicted Based on
Monotherapies. Although the model gives an overall good fit
to all treatment arms, it systematically overestimates the fre-
quency of uninfecteds in monotherapy A and underestimates
it for cycling. The differences in key parameters (Fig. 2) indi-
cate that the population dynamics of multidrug strategies, such
as cycling and mixing, cannot be predicted accurately from mea-
surements based on the monotherapies only. Importantly, using
the parameter estimates from the monotherapies to model the
outcome of cycling and mixing leads to an overestimation of the
frequency of resistants and an underestimation of the frequency
of infecteds, implying that both cycling and mixing perform bet-
ter than would be anticipated on the basis of the effect of the
monotherapies (SI Appendix, Fig. S3).

Preexisting Double Resistance Negates Benefit of Combination Ther-
apy. For scenario ∅ (admission of uninfected and sensitive
infected patients only), combination therapy outperforms all
other treatment strategies. But how does combination therapy
perform when resistant patients are also admitted? To address
this, we studied two further scenarios with progressive levels of
resistant inflow into the hospital. In scenario I, also, patients
were admitted who carry bacteria resistant to a single antibiotic.
In scenario II, additionally, patients carrying double resistance
were admitted. For the three scenarios, the different treatment
regimens were compared on the basis of the frequencies of
uninfecteds and resistants, respectively, over transfers 9 to 12
(Fig. 3; full time series are shown in SI Appendix, Figs. S7–
S8). Under scenarios ∅ and I, combination therapy significantly
outperformed the other treatment regimens, with regard to
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Fig. 2. Posterior distributions (estimated probability distribution for a
given parameter [Materials and Methods ]) obtained from fitting the model
to different parts of the experimental data. Mono A, mono B, combina-
tion, cycling, and mixing refer to fitting the model to data only from these
treatment arms, whereas simultaneous refers to the overall fit to the time
course of all treatment arms simultaneously. A, B, and C show, respectively,
the posterior distributions of the parameters τA, τB, and νB describing the
clearance rate after treatment with antibiotic A, clearance rate after treat-
ment with antibiotic B, and the rate of de novo emergence of B resistance
for the sensitive strain. Posterior distributions of the parameters that cannot
be identified from a given treatment arm are shown as thin box plots and
equal to their prior distribution, which is uniform between zero and one.
Posterior distributions, including all model parameters, are presented in
SI Appendix, Fig. S5.

both maximizing the frequency of uninfecteds and minimizing
the frequency of resistants. In scenario II, combination therapy
was no longer significantly different from cycling and mixing,
and all strategies selected for high levels of double resistance.
In summary, combination therapy offers a benefit, as long as
there is no influx of double resistance, and all strategies fail
otherwise.

Benefits of Combination Therapy Do Not Arise only from Higher
Dosage. Does the advantage of combination therapy stem from
increased drug dosage? More specifically, does combination
therapy outperform the other strategies because it is based on
using each antibiotic at the respective concentration used in the
single drug therapies? To address this question, we performed
another series of analogous experiments for combination ther-
apy, lowering the drug concentration from 2× MIC, as used
in scenarios ∅, I, and II, to 1× and 0.5× MIC for both drugs
(plus a control of no drugs). We measured the effect on the
emergence of double resistance in two ways: 1) growth on solid
medium containing 10× MIC, indicating high-level resistance;
and 2) growth in liquid culture at the respective drug concen-
tration used for treatment indicating low-level resistance. The
results show that combination therapy prevents the emergence
of both high- and low-level double resistance, as long as the con-
centration of both antibiotics are 1× MIC or higher (upper left
triangles, Fig. 4). This finding argues that it is not the effect
of drug dosage, but the probability of simultaneous acquisition

of multiple mutations that underlies the success of combination
therapy. For lower concentrations, low-level, but not high-level,
resistance evolves (lower right triangles, Fig. 4). Note, how-
ever, that the concentrations used in liquid are below MIC for
at least one antibiotic, where even bacteria sensitive to these
antibiotics are expected to grow. Given that at 1× MIC for
both antibiotics, combination therapy prevents the emergence
of resistance; this indicates that the benefit of combination ther-
apy does not arise only from the higher combined concentration
compared to the other treatment strategies. This is another possi-
ble benefit of combination therapy: Combining antibiotics might
enable the reduction of the concentration of potentially toxic
antibiotics, while still minimizing the likelihood of resistance
evolution.

Discussion
In summary, we find that, as long as there is no influx of dou-
ble resistance into the focal population, combination therapy
outperforms all other strategies considered here, both in terms
of maximizing frequency of uninfecteds and minimizing the fre-
quency of resistants. Note that the superiority of combination
therapy is based on criteria that focus only on the evolution of
resistance and the number of uninfecteds, but disregard other
aspects that are highly relevant in clinical practice, such as side
effects. The advantage of combination therapy, however, does
not appear to result from the higher total antibiotic concentra-
tion when combining antibiotics. When there is influx of double
resistance, all strategies fail, as they all result in the increase of
double resistance. In other words, combination therapy is best at
preventing the evolution of resistance, and all strategies are poor
at managing preexisting resistance.

Fig. 3. Frequencies of uninfected and resistant populations for different
treatment strategies in different resistance inflow scenarios. Points show
population phenotype frequency averaged over transfers 9 to 12 for four
biological replicates for scenarios ∅ (no inflow of resistance), I (inflow of
both single resistances), and II (inflow of double resistance). Bars show the
median. Samples not sharing a letter are significantly different (generalized
linear hypothesis test across treatment strategies, P < 0.05; ANOVA tables
and all P values can be found in SI Appendix, Tables S4–S9). R, resistant
populations; U, uninfected (sum of phenotypes A, B, A/B, and AB; Fig. 1).
The full time series are shown in SI Appendix, Figs. S6–S8.
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Fig. 4. Mean frequencies of double-resistant populations after five trans-
fers at different concentrations of nalidixic acid and streptomycin. The
upper left triangle indicates frequency of double resistance to a high con-
centration of drugs used on plate (10× MIC), while the lower right triangle
indicates double resistance to the drug concentrations used in liquid cul-
ture. Full time series of population phenotype frequencies can be found in
SI Appendix, Fig. S9.

The findings are in full agreement with theoretical predic-
tions (4, 12). Moreover, the finding that cycling and mixing
have similar effects is supported by a recent multicenter RCT
(17). The observed superiority of combination therapy, how-
ever, is somewhat in contradiction with empirical observations.
Two meta-analyses of RCTs (15, 16) compared monotherapy
with a single β-lactam to combination therapy with (typically a
different) β-lactam and an aminoglycoside. These studies con-
cluded that combination therapy does not offer an advantage
over monotherapy with regard to the emergence of antibiotic
resistance. While combination therapy did reduce treatment fail-
ure due to the emergence of resistance (15), monotherapy was
better or noninferior with regard to other clinical endpoints,
such as emergence of resistance, mortality (either all-cause or
attributable to infection), or superinfection. In general, RCTs
comparing combination therapy and monotherapy are scarce, in
particular with regard to resistance as a primary clinical endpoint
(15). Given the success of combination therapy in reducing the
emergence of resistance in other infections such as HIV, malaria,
or tuberculosis, in our view, combination therapy deserves fur-
ther investigation as a strategy to prevent antibiotic resistance
also for nosocomial infections.

We were surprised by the lack of double resistance observed
in our experiments, given previous reports indicating that posi-
tive epistasis can drive the evolution of double resistance for the
drugs used (18). The resistant strains used for scenarios I and II
are based on single point mutations that confer high-level resis-
tance to each drug. When combined, they also confer high-level
double resistance at low cost (18). Sequencing of populations
selected from both monotherapies, as well as the cycling and
mixing treatments, revealed mutations at previously described
locations in both gyrA and rpsL (18) (SI Appendix, Table S2).
However, the precise mutations that we introduced into our
strains were found rarely. Trindade et al. (18) do not only find
positive epistasis, but also mutations that seemed to be lethal
when combined. Although some of the mutations that we found
are different from those studied by Trindade et al. (18), a pos-
sible explanation for the absence of double resistance could
be strong negative interactions between resistance mutations
evolving in our experiments.

The presented results corroborate the feasibility of our
approach to study resistance evolution using a framework based

on in vitro epidemiology. We demonstrate that massively par-
allel long-term experimental evolution of antibiotic resistance
under realistic epidemiological population dynamics is possi-
ble in an automated setup. We have investigated here a lim-
ited set of scenarios. Importantly, we only consider chromoso-
mal mutations that are not horizontally transferred. However,
while plasmid-mediated resistance is a big concern, chromoso-
mal resistance mutations also contribute to resistance in many
important pathogens (22, 23).

It is important to state that to what extent the behavior of
our experimental model would fit the results of the epidemio-
logical model was not known a priori. Fundamentally, the same
processes, i.e., mutation and selection, are happening in all
treatment arms. However, while our experimental model quali-
tatively captures the behavior, there are quantitative differences,
especially with regard to the cycling and mixing strategies. The
discrepancy among the posterior distributions obtained from
different treatment arms highlights that the population dynam-
ics in a given treatment arm cannot be fully captured by using
the estimates of the identifiable parameters from the other
treatment arms.

Our model does not consider stochastic effects, which is a limi-
tation when modeling extinction events. Although, in theory, this
might affect the frequency of the resistant strains, especially for
multidrug therapies, we believe that our estimation results would
be robust to such stochastic effects, since we have not observed
any extinction events in the absence of treatment.

Future studies could increase realism by studying the effect of
treatment strategies when resistance is plasmid-borne or when
compliance to the prescribed regimen is imperfect, which both
could affect the superiority of combination therapy. Further-
more, in vitro studies allow the consideration of a much broader
array of drugs and bacterial strains, as effects of combination
therapy are dependent on both the strain and the drug (20, 24,
25). Given the impracticalities of animal models for experimen-
tal epidemiology, our approach may present a valid attempt to
narrow the gap between computational and clinical studies on
antibiotic-resistance evolution.

Materials and Methods
Strains, Drugs, and Media. All strains were grown in minimal salts (MS)
medium [MS contains 1 g/L (NH4)2SO4, 3 g/L KH2PO4, and 7 g/L K2HPO4 sup-
plemented with 0.4 mM MgSO4, 3.33 nM FeSO4, 1.2 mM Na3C6H5O7, and
0.8 ng/L thiamine], and 0.2% glucose was added as a carbon source. Further-
more, 15 µg/mL chloramphenicol was added to maintain the used mutants
and to prevent external contaminations. Solid medium was prepared the
same way, but supplemented with 1.5% (weight/volume) agar.

Streptomycin was used at a concentration of 12.5 or 100 µg/mL in liquid
and solid medium, respectively. Nalidixic acid was used at a concentration
of 20 or 40 µg/mL in liquid and solid medium, respectively. These concentra-
tions correspond to 2× MIC in liquid and 10× MIC (as measured by using a
standard broth microdilution assay) on solid medium for both antibiotics.

All strains used were derived from E. coli K-12 MG1655. A gyrA S83 L
(C248 T) or a rpsL K43 R (A129 C) mutation was added by using single-
stranded DNA recombineering (26) and subsequently transduced alone or
in combination into a fresh background by using P1 transduction (27, 28).
The mutations conferred resistance to nalidixic acid or resistance to strep-
tomycin, respectively, at relatively low fitness cost (18) and were selected
on plates containing 40 µg/mL nalidixic acid and/or 100 µg/mL strepto-
mycin. Additionally, and following the same methodology, a fluorescent
marker linked to a chloramphenicol resistance gene (cat-YFP) from E. coli
MDS42(YFP) (29) was transduced into the single- and double-resistant strains
and selected on plates containing 25 µg/mL chloramphenicol. In order to
increase mutation supply, the mutS knockout from E. coli JW2703 (30) was
also transduced into the strains and selected on plates containing 25 µg/mL
kanamycin, resulting in the strains used in the experiment. All used geno-
types were verified by resequencing of the modified genes. A list of all
strains and their genotype can be found in SI Appendix, Table S3.

Evolution Experiments. In order to test the effect of different treatment
strategies on the evolution of antibiotic resistance, we set up large-scale,
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serial passage evolution experiments using a Tecan Evo 200 automated
liquid handling system (Tecan) with an integrated, automated incuba-
tor (Liconic STX100, Liconic) and a Tecan Infinite F200 spectrophotometer
(Tecan).

Our experiments were designed to simulate a hospital or hospital ward.
We modeled beds as wells in a 384-well plate (Greiner catalog no. 781186)
and patients as growth media in those wells. All beds were always occu-
pied, i.e., filled with a total of 50 µL of growth medium, allowing for a
maximum population size of about 107 CFU. One 384-well plate contained
four replicate units with 94 patients each. The remaining eight wells were
used as sterile controls. We serially passaged every well every day into new
plates, incorporating the following processes: 1) treatment; 2) admission
and discharge; 3) transfer; 4) infection and superinfection; and 5) pheno-
typing. Before each transfer, a custom R script computed the necessary
pipetting steps using the parameters outlined below and prepared pipetting
worklists. For scenario ∅, we initially planned the experimental evolution
experiment for 40 transfers. However, we decided to extend the experi-
ment and switch the two monotherapies and to continue the experiment
for another 12 transfers. We finished the experiment after 52 transfers; how-
ever, we here focus on the 40 transfers before the drug switch. The complete
time series for scenario ∅ can be found in SI Appendix, Fig. S6. Scenario I
and scenario II were run for 13 and 22 transfers, respectively. Because these
experiments were largely dominated by preexisting resistance, and because
of the trajectories observed in the scenario ∅, we decided to stop these
scenarios earlier, as the dynamics had already run its course (SI Appendix,
Figs. S7 and S8). Every 10 transfers, and at the end of each experiment,
35 µL of 40% glycerol was added to the assay plates, and the plates were
stored at −80 ◦C.

Treatment. First, we prepared new 384-well plates by filling all wells with
40 µL of growth medium. We then added 5 µL of diluted antibiotic stock
solution (20× final concentration, or no antibiotic for control wells and
wells without treatment) to all wells, according to the treatment strategy.
We used a separate 384-well plate for every treatment strategy. All wells,
except the sterile controls, were treated, irrespective of their infection sta-
tus. We considered the following treatment strategies: 1) no treatment;
2) monotherapy with nalidixic acid; 3) monotherapy with streptomycin; 4)
combination therapy with both drugs; 5) cycling, where the used antibi-
otic was changed every other transfer; and 6) mixing, where one of the
antibiotics was randomly assigned to each patient. For the initial setup of
the first 384-well plate, no antibiotics were added. While all plates were
prepared and treated at the same time, the following steps were con-
ducted in series to minimize the difference in incubation time between
the plates.

Admission and Discharge. The experimental design also reflected the influx
of patients from a community outside the hospital. This community was
assumed sufficiently large, such that it did not change during the course of
the experiment. Experimentally, this was implemented as follows. A certain
fraction of wells (0.2 for all experiments reported here) were randomly cho-
sen for admission and discharge. These wells were exempt from the transfer
to the new plate (see Transfer section). Instead, these wells were inoculated
with 5 µL from replicate overnight cultures, or sterile medium for input
of uninfecteds, that was prepared from frozen stocks every day for the
following day. This represents patient influx from the outside community.
The fraction of the different phenotypes (uninfecteds, sensitive infecteds,
single-resistant A, single-resistant B, and double-resistant AB) constituting
the overall influx differed for the different scenarios considered. These pro-
portions were (0.15, 0.85, 0, 0, 0) for scenario ∅, (0.21, 0.57, 0.11, 0.11, 0) for
scenario I, and (0.21, 0.52, 0.11, 0.11, 0.05) for scenario II, respectively. All
wells that were not chosen received 5 µL of sterile medium to equalize
culture volumes.

Transfer. Next, all wells that had not been chosen for admission and dis-
charge were diluted into the new plate at the same position. This was done
by using a custom pintool developed in-house that allows excluding certain
positions by removing certain pins (i.e., the pins corresponding to the wells
that are chosen for admission and discharge). The pintool transferred a fixed
volume of about 0.3 µL of the culture for a dilution of approximately 1/166
at each transfer (about 5 × 104 CFU). For the initial setup, this step was
skipped.

Infection and Superinfection. To implement infection, we randomly chose
a fraction of wells (0.3 in all experiments) as the sources of infection.
The targets of infection were chosen randomly with replacement from the

remaining wells. Approximately 0.3 µL of the chosen source wells were
then transferred from the previous plate to the chosen target well on the
new plate by using the custom pintool for a dilution of approximately
1/166 (approx. 5 × 104 CFU). The newly prepared plates were then moved
to the incubator and incubated at 37◦ C and 95% relative humidity for
approximately 24 h.

Phenotyping. After the newly prepared plates were placed in the incuba-
tor, an aliquot of the cultures from the previous transfer was spotted onto
agar plates containing no antibiotic, nalidixic acid, streptomycin, or both
antibiotics. The agar plates were then also moved into the incubator. At the
beginning of the next transfer, agar plates were fetched from the incubator,
and a picture of each plate was taken. Pictures were analyzed for growth
(growth/no growth) by using the Pickolo Software package (SciRobotics), as
well as manual inspection of each picture by using a custom R script.

To measure growth of cultures in the 384-well plates, OD595 of each well
was measured at the beginning of each transfer. We defined growth in 384-
well plates as reaching an OD595 > 0.1 after incubation.

From these two measurements, we defined six possible phenotypes: U
(uninfected), for populations that showed no growth on any of the agar
plates and in liquid culture; S, (sensitive) for populations that grew only in
the absence of antibiotics on agar or in liquid culture; A or B, for populations
that grew on agar plates or in liquid culture in the presence of nalidixic acid
or streptomycin, respectively; A/B, for populations that grew in the presence
of nalidixic acid and streptomycin (on agar plates or in liquid culture), but
not in the presence of both drugs at the same time, indicating a mixed pop-
ulation; and AB, for populations that grew both in the presence of both
single drugs and the combination. All other populations were classified as
E, for erroneous phenotypes.

Sequencing. To identify common resistance mutations, we picked three
random populations from time points between 20 and 40 from all four
replicates of the monotherapy treatments, as well as cycling and mixing.
Populations were inoculated from frozen samples and grown for 24 to
48 h, and DNA was isolated by using the Wizard Genomic DNA purifica-
tion kit (Promega). We sequenced the main resistance-determinant regions
for streptomycin and nalidixic acid, which are in gyrA and rpsL, respectively
(18). The regions were amplified and sequenced by using the same primers
as used in Trindade et al. (18).

Statistical Analysis. To compare the three different scenarios studied, we
averaged the population phenotype frequency over transfers 9 to 12 for
all four biological replicates for each scenario. Transfers 9 to 12 were cho-
sen because they are the latest timepoints for which we have data for all
three scenarios. The effect of different treatment strategies on the frequen-
cies of uninfected and resistant populations in the three different scenarios
was tested by using an ANOVA, followed by a post hoc generalized linear
hypothesis test for a model that included both treatment strategies and
phenotype as a main effect, as well as their interaction. ANOVA tables, as
well as all tested linear hypotheses and the corresponding test statistics,
can be found in SI Appendix, Tables S4–S9. All statistical analyses were per-
formed in R 4.0.2 (31) using the packages tidyverse (32), multcomp (33), and
multcompView (34).

Mathematical Modeling. Adapting the mathematical model by Tepekule
et al. (12), we used a compartmental model to describe the population
dynamics observed in the evolution experiment. The mathematical model is
described in greater detail in SI Appendix. The model considered each well
as a patient and ignored the population dynamics of bacteria within the
wells. Hence, at each time point, each well belonged to one of the five com-
partments: U, S, A, B, or AB. The phenotype A/B, which represents a mixed
population of single resistants, was not considered in the model, since the
frequency of A/B in the experiment was negligible compared to the other
phenotypes. The epidemiological processes included in our mathematical
model are analogous to those implemented during the experiments, which
were admission and discharge of the patients, infection, superinfection,
clearance due to successful treatment, and de novo emergence of resistance
during incubation (Fig. 1A). Each process was associated with a rate, and
these rates were translated into model parameters of the corresponding
system of ordinary differential equations (ODEs). The system of ODEs and
the model parameters with their corresponding descriptions and units are
provided in SI Appendix.

Parameter Estimation and Model Fitting. We estimated the parameters of
the ODE-based model by fitting it to the time course of the frequency of
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the different phenotypes observed for scenario ∅, as this experiment had
the largest number of successive days of treatment. Since our experimen-
tal results are highly replicable (Fig. 1 C–H), we used the mean frequency
of phenotypes averaged over the four replicates. To fit the mathematical
model to the experimental data, we implemented the Metropolis–Hastings
algorithm (35) and used the least-squares method (36), assuming that
the error between the model outcomes and the experimental data were
normally distributed (see also SI Appendix). By minimizing this error, we
obtained posterior distributions for each parameter, which were then used
to simulate the mathematical model. A uniform prior distribution on the
interval (0, 1) (U (0, 1)) was assumed for all parameter values. We imple-
mented two different fitting procedures, where 1) the parameters were
estimated separately for each treatment by minimizing the error inde-
pendently for different treatment arms (independent estimation); and 2)

the parameters were estimated simultaneously by minimizing the error
over the concatenated time course of all treatments (simultaneous estima-
tion). Posterior distributions of the model parameters for independent and
simultaneous estimations are given in SI Appendix, Fig. S5.

Data Availability. Experimental data (37) and analysis scripts, as well as
code for the mathematical model and parameter estimation data (38),
have been deposited in Zenodo (https://doi.org/10.5281/zenodo.4537380
and https://doi.org/10.5281/zenodo.3819350).
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